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Abstract. In the Minimal Supersymmetric Standard Model with complex parameters (cMSSM) we calcu-
late higher order corrections to the Higgs boson sector in the Feynman-diagrammatic approach using the
on-shell renormalization scheme. The application of this approach to the cMSSM, being complementary to
existing approaches, is analyzed in detail. Numerical examples for the leading fermionic corrections, includ-
ing the leading two-loop effects, are presented. Numerical agreement within 10% with other approaches is
found for small and moderate mixing in the scalar top sector. The leading fermionic corrections, supple-
mented by the full logarithmic one-loop and the leading two-loop contributions are implemented into the
public Fortran code FeynHiggsFastC.

1 Introduction

The search for the lightest Higgs boson is a crucial test
of Supersymmetry (SUSY) which can be performed with
the present and the next generation of accelerators. The
prediction of a relatively light Higgs boson is common to
all supersymmetric models whose couplings remain in the
perturbative regime up to a very high energy scale [1]. A
precise prediction for the mass of the lightest Higgs bo-
son and its couplings to other particles in terms of the
relevant SUSY parameters is necessary in order to deter-
mine the discovery and exclusion potential of LEP2 and
the upgraded Tevatron, and for physics at the LHC and
future linear colliders, where eventually a high-precision
measurement of the properties of the Higgs boson might
be possible [2].

The case of the Higgs sector in the CP-conserving
MSSM has been tackled up to the two-loop level by differ-
ent methods such as the Effective Potential (EP) method
[3], the renormalization group (RG) improved one-loop
EP approach [4] and the Feynman-diagrammatic (FD)
method using the on-shell renormalization scheme [5,6].
The application of different methods lead to thorough
comparisons between the different approaches. Most
prominently the comparison between the RG improved
one-loop EP result and the FD result [7–9], and most re-
cently between the FD and the EP result [9,10], have been
performed. These comparisons, showing agreement where
expected, lead to deeper insight into the radiative correc-
tions in the MSSM Higgs sector and thus to the confidence
that the higher-order contribution, although being large,
are under control.
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In the case of the MSSM with complex parameters
(cMSSM) the higher order corrections have yet been re-
stricted, after the first more general investigations [11], to
evaluations in the EP approach [12,13] and to the RG im-
proved one-loop EP method [14,15]. While in the MSSM
without complex parameters the FD calculation, using the
on-shell renormalization scheme, has provided the only
complete calculation at the one-loop level [16] and further-
more the relevant logarithmic and non-logarithmic correc-
tions at the two-loop level [6,7], a corresponding calcula-
tion in the cMSSM has been missing so far.

This paper provides the next step into this direction: it
is shown in detail how the FD method, employing the on-
shell renormalization scheme, can be applied to the Higgs
sector of the cMSSM. The general analysis is exemplified
at the leading fermionic one-loop corrections, showing the
applicability of the method and providing the full cor-
responding analytical result. For numerical examples and
the comparison with existing approaches, the result is sup-
plemented by non-leading corrections at the one- and two-
loop level taken over from the real MSSM case. All results
are finally incorporated into a public Fortran code. A de-
tailed analysis, including a full one-loop calculation and
the dominant two-loop corrections to the cMSSM Higgs
sector will be presented elsewhere [17].

The rest of the paper is organized as follows. In Sect. 2
we review the Higgs sector and the scalar quark sector
of the cMSSM, providing all relevant information about
the relations of physical and unphysical parameters, the
masses and the mixing angles. The renormalization in the
on-shell scheme in the cMSSM Higgs sector is presented in
detail in Sect. 3, together with the analytical result for the
leading fermionic corrections obtained in this approach.
Section 4 briefly reviews the evaluation of the Higgs bo-
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son masses and couplings in the FD approach. Numerical
results for the comparison with other approaches are given
in Sect. 5. Section 6 contains the description of the corre-
sponding Fortran code FeynHiggsFastC. The conclusions
can be found in Sect. 7.

2 Calculational basis

2.1 The tree-level Higgs sector of the cMSSM

The (c)MSSM Higgs potential reads [18]:

V = m2
1H1H̄1 +m2

2H2H̄2 −m2
12(εabHa

1Hb
2 + h.c.)

+
g′2 + g2

8
(H1H̄1 − H2H̄2)2 +

g2

2
|H1H̄2|2, (1)

wherem2
1,m

2
2,m

2
12 are soft SUSY-breaking terms, g, g′ are

the SU(2) and U(1) gauge couplings, and ε12 = −1. The
doublet fields H1 and H2 are decomposed in the following
way:

H1 =

(
H1

1

H2
1

)
=

(
v1 + (φ0

1 + iχ0
1)/

√
2

φ−
1

)
,

H2 =

(
H1

2

H2
2

)
= eiξ

(
φ+

2

v2 + (φ0
2 + iχ0

2)/
√
2

)
. (2)

ξ is a possible new phase between the two Higgs doublets.
From the unphysical parameters in (1) the transition to
the physical parameters (including the tadpoles) is per-
formed by the following substitution (see also [6,11]):

v1 →
√
2cβsW cWMZ

e

v2 →
√
2sβsW cWMZ

e

g1 → e

cW

g2 → e

sW

m2
1 → M̄2

H±s2β − 1
2
(c2β − s2β)M

2
Z

+t1
e

2sW cWMZ
cβ(1 + s2β) − t2

e

2sW cWMZ
sβc

2
β

m2
2 → M̄2

H±c2β +
1
2
(c2β − s2β)M

2
Z − t1

e

2sW cWMZ
cβs

2
β

+t2
e

2sW cWMZ
sβ(1 + c2β)

Rem2
12 →

(
−M̄2

H±sβcβ + t1
e

2sW cWMZ
s3β

+t2
e

2sW cWMZ
c3β

)
1

cos ξ

Imm2
12 →

(
tA

e

2sW cWMZ

)
1

sin ξ
. (3)

tanβ is the ratio of the two vacuum expectation values,
tanβ = v2/v1, and sβ = sinβ , cβ = cosβ , cW ≡ MW /

MZ , s2W = 1 − c2W . M̄2
H± ≡ M2

H± − M2
W , where (as will

be shown below) MH± is the mass of the charged Higgs
boson H±. Contrary to the real case, where the mass of
the CP-odd Higgs boson, MA, is used as input parameter,
in the cMSSMMH± is chosen as physical parameter, since
the field A ≡ sβχ1 + cβχ2 (as will be shown later) mixes
with the fields φ1 and φ2. t1 and t2 denote the tadpoles
of the fields φ1 and φ2, whereas tA is the tadpole of the
field A. The expressions for the tadpoles can be obtained
directly by expanding the Higgs potential (1) in the fields
from the terms linear in φ1, φ2 and A.

In the cMSSM all neutral Higgs bosons can mix. There-
fore the following (4×4) mass matrix has to be considered
[11]:

MHiggs =

(
MS MSP

M+
SP MP

)
, (4)

resulting in the Lagrange density

L =
1
2
(φ1, φ2, χ1, χ2) MHiggs



φ1

φ2

χ1

χ2


 . (5)

Here MS denotes the (2 × 2) mass matrix of the fields φ1
and φ2 (the CP-even mass matrix in the real MSSM), MP
represents the (2 × 2) mass matrix of the fields χ1 and
χ2 (the CP-odd mass matrix in the real MSSM). MSP
denotes the mixing terms (which are always zero in the
real MSSM). The three matrices are given in terms of
physical parameters by

MS =

(
m2
φ1

m2
φ1φ2

m2
φ1φ2

m2
φ2

)
(6)

=

(
M̄2
H±s2β +M2

Zc
2
β −sβcβ(M̄2

H± +M2
Z)

−sβcβ(M̄2
H± +M2

Z) M̄2
H±c2β +M2

Zs
2
β

)
(7)

+

(
t̄1cβ(1 + s2β) − t̄2sβc

2
β t̄1s

3
β + t̄2c

3
β

t̄1s
3
β + t̄2c

3
β −t̄1cβs2β + t̄2sβ(1 + c2β)

)

MSP =

(
0 t̄A
t̄A 0

)
(8)

MP =

(
M̄2
H±s2β M̄2

H±sβcβ
M̄2
H±sβcβ M̄2

H±c2β

)
(9)

+

(
t̄1cβ(1 + s2β) − t̄2sβc

2
β −t̄1s3β − t̄2c

3
β

−t̄1s3β − t̄2c
3
β −t̄1cβs2β + t̄2sβ(1 + c2β)

)

with t̄x ≡ tx e/(2sWMW ), x = 1, 2, A.
Similarly the matrix of the charged Higgs bosons is

given by

MC =

(
M2
H±s2β M2

H±sβcβ
M2
H±sβcβ M2

H±c2β

)
(10)
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+

(
t̄1cβ(1 + s2β) − t̄2sβc

2
β −t̄1s3β − t̄2c

3
β

−t̄1s3β − t̄2c
3
β −t̄1cβs2β + t̄2sβ(1 + c2β)

)

2.2 Rotation with β

The angle β diagonalizes (up to tadpole contributions) the
matrix MP:(

G

A

)
= D+(β)

(
χ1

χ2

)
=

(
cβ −sβ
sβ cβ

)(
χ1

χ2

)
(11)

(χ1, χ2) MP

(
χ1

χ2

)

= (χ1, χ2) D(β)D+(β) MP D(β)D+(β)

(
χ1

χ2

)

= (G,A) MD
P

(
G

A

)
(12)

with

MD
P =

(
cβ t̄1 + sβ t̄2 sβ t̄1 − cβ t̄2
sβ t̄1 − cβ t̄2 M̄2

H±

)
. (13)

This also affects the matrix MSP. Defining the (4 × 4)
matrix

D4(β) =

(
1 0
0 D(β)

)
, (14)

the rotation of MHiggs can be performed:

(φ1, φ2, χ1, χ2) MHiggs



φ1

φ2

χ1

χ2




= (φ1, φ2, χ1, χ2) D4(β)D4+(β) MHiggs

×D4(β)D4+(β)



φ1

φ2

χ1

χ2




= (φ1, φ2, G,A) M
β
Higgs



φ1

φ2

G

A


 (15)

with

Mβ
Higgs =

(
MS Mβ

SP

Mβ+
SP MD

P

)
(16)

and

Mβ
SP = t̄A

(
−sβ cβ
cβ sβ

)
. (17)

The angle β diagonalizes (up to tadpole contributions)
also the matrix MC:(

G±

H±

)
= D+(β)

(
φ±

1

φ±
2

)
=

(
cβ −sβ
sβ cβ

)(
φ±

1

φ±
2

)
(18)

(φ−
1 , φ

−
2 ) MC

(
φ+

1

φ+
2

)

= (φ−
1 , φ

−
2 ) D(β)D+(β) MC D(β)D+(β)

(
φ+

1

φ+
2

)

= (G−, H−) MD
C

(
G+

H+

)
(19)

with

MD
C =

(
cβ t̄1 + sβ t̄2 +sβ t̄1 − cβ t̄2
+sβ t̄1 − cβ t̄2 M2

H±

)
. (20)

2.3 Rotation with α

The angle α is defined as

tan 2α = tan 2β
M̄2
H± +M2

Z

M̄2
H± −M2

Z

. (21)

It diagonalizes (up to tadpole contributions) the matrix
MS (sα = sinα , cα = cosα ):(

H

h

)
= D+(α)

(
φ1

φ2

)
=

(
cα sα

−sα cα

)(
φ1

φ2

)
(22)

(φ1, φ2) MS

(
φ1

φ2

)

= (φ1, φ2)D(α)D+(α) MS D(α)D+(α)

(
φ1

φ2

)

= (H,h) MD
S

(
H

h

)
(23)

with (see (24) on top of the next page) Using the (21) and
setting the tadpoles to zero one obtains:

MD
S = M̄2

H±

(
(cβsα − cαsβ)2 0

0 (cβcα + sαsβ)2

)

+M2
Z

(
(cαcβ − sαsβ)2 0

0 (cβsα + sβcα)2

)
.(25)

The rotation with α also affects the matrix Mβ
SP. Defining

the (4 × 4) matrix

D4(α) =

(
D(α) 0
0 1

)
, (26)
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MD
S = M̄2

H±

(
(cβsα − cαsβ)2 sβcβ(s2α − c2α) + sαcα(c2β − s2β)

sβcβ(s2α − c2α) + sαcα(c2β − s2β) (cβcα + sαsβ)2

)

+M2
Z

(
(cαcβ − sαsβ)2 sβcβ(s2α − c2α) − sαcα(c2β − s2β)

sβcβ(s2α − c2α) − sαcα(c2β − s2β) (cβsα + sβcα)2

)

+t̄1

(
−cβs2βs2α + 2sαcαs3β + cβc

2
α(1 + s2β) s3β(c

2
α − s2α) − sαcαcβ(1 + 2s2β)

s3β(c
2
α − s2α) − sαcαcβ(1 + 2s2β) −2cαsαs3β + cβ(−c2αs2β + s2α(1 + s2β))

)

+t̄2

(
2cαsαc3β − c2αc

2
βsβ + sβs

2
α(1 + c2β) c3β(c

2
α − s2α) + sαcαsβ(1 + 2c2β)

c3β(c
2
α − s2α) + sαcαsβ(1 + 2c2β) −2cαsαc3β + sβ(c2α(1 + c2β) − s2αc

2
β)

)
(24)

the rotation of Mβ
Higgs can be performed:

(φ1, φ2, G,A) M
β
Higgs



φ1

φ2

G

A




= (φ1, φ2, G,A) D4(α)D4+(α) Mβ
Higgs

×D4(α)D4+(α)



φ1

φ2

G

A




= (H,h,G,A) MD
Higgs



H

h

G

A


 (27)

with

MD
Higgs =

(
MD

S Mβα
SP

Mβα+
SP MD

P

)
(28)

and

Mβα
SP = t̄A

(
−cαsβ + sαcβ sαsβ + cαcβ
sαsβ + cαcβ cαsβ − sαcβ

)
. (29)

2.4 Tree-level expressions

At tree-level all tadpoles can be set to zero. In the φ1-φ2
sector this ensures that v1,2 are the vacuum expectation
values. In the χ1-χ2 sector this corresponds to a redefini-
tion of the phase of m2

12 so that the phase eiξ is absorbed
[11].

One arrives at the following masses at tree-level:

H : m2
H =

1
2

[
M̄2
H± +M2

Z

+
√
(M̄2

H± +M2
Z)2 − 4M2

ZM̄
2
H±c22β

]

h : m2
h =

1
2

[
M̄2
H± +M2

Z

−
√
(M̄2

H± +M2
Z)2 − 4M2

ZM̄
2
H±c22β

]

A : M2
A = M2

H± −M2
W (≡ M̄2

H±)

G : m2
G = M2

Z

H± : M2
H± (input value)

G± : m2
G± = M2

W (30)

The entries for the Goldstone bosons G and G± are to be
understood in the Feynman gauge. At tree-level there is
no CP violation in the cMSSM Higgs sector. The fields h
and H are decoupled from the fields A and G.

2.5 The scalar quark sector in the cMSSM

The mass matrix of two squarks of the same flavor, q̃L and
q̃R, is given by

Mq̃ =

(
M2
L +m2

q mq X
∗
q

mq Xq M2
R +m2

q

)
(31)

with

M2
L = M2

Q̃
+M2

Z cos 2β (Iq3 −Qqs
2
W )

M2
R = M2

Q̃′ +M2
Z cos 2β Qqs

2
W (32)

Xq = Aq − µ∗{cotβ , tanβ},
where {cotβ , tanβ} applies for {up,down}-type squarks
respectively. In an isodoublet the SU(2) symmetry en-
forces that MQ̃ has to be chosen equal for both squark
types. The MQ̃′ on the other hand can be chosen indepen-
dently for every squark type. In the scalar quark sector of
the cMSSM Nq + 1 phases are present, one for each Aq
and one for µ, i.e. Nq + 1 new parameters appear. As an
abbreviation it will be used

φq = arg (Xq) . (33)

As an independent parameter one can trade arg (Aq) ≡
φAq for φq.
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The squark mass eigenstates are obtained by the rotation(
q̃1
q̃2

)
= S q̃

(
q̃L
q̃R

)
(34)

with

S q̃ =

(
cq̃ s∗

q̃

−sq̃ c∗q̃

)
=

(
eiφq/2|cq̃| e−iφq/2|sq̃|

−eiφq/2|sq̃| e−iφq/2|cq̃|

)
,

S q̃+S q̃ = 1 , (35)

where the matrix with φq → 0 diagonalizes Mq̃∣∣∣Xq→|Xq|
.

The mass eigenvalues are given by

m2
q̃1,2

= m2
q +

1
2

[
M2
L +M2

R

∓
√
(M2

L −M2
R)2 + 4m2

q|Xq|2
]
, (36)

independent of the phase of Xq. The unrotated squark
mass matrix can now be expressed in terms of the physical
parameters mq̃1 ,mq̃2 and the q̃ mixing angle:

Mq̃ =

(
cq̃c

∗
q̃m

2
q̃1

+ sq̃s
∗
q̃m

2
q̃2

s∗
q̃c

∗
q̃(m

2
q̃1

−m2
q̃2
)

sq̃cq̃(m2
q̃1

−m2
q̃2
) sq̃s

∗
q̃m

2
q̃1

+ cq̃c
∗
q̃m

2
q̃2

)
. (37)

3 Calculation of the renormalized
self-energies

3.1 Renormalization

The renormalization is performed as follows:

M2
H± → M2

H± + δM2
H±

M2
W → M2

W + δM2
W

M2
Z → M2

Z + δM2
Z

tx → tx + δtx, x = 1, 2, A
tanβ → tanβ + δ tanβ

H1 → Z
1/2
H1

H1

H2 → Z
1/2
H2

H2 (38)

The counterterm for the A tadpole can be understood as
the effect of re normalizing the phase ξ of H2.

In the following we will concentrate on the contribu-
tions that are relevant for the leading m4

t corrections (or
any corrections of the type ∼ m4

f ) for the masses of the
neutral Higgs bosons. There, only δM2

H± and δtx, x =
1, 2, A, enter (see also [6]).
The renormalized H± self-energy is then given by

Re Σ̂H±(0) = ΣH±(0) − δM2
H± , (39)

the renormalized tadpoles are given by

t̂x = Tx + δtx, x = 1, 2, A, (40)

Tx represents the one-loop contribution to tx.
The on-shell renormalization conditions are imposed:

Re Σ̂H±(0) = 0 , (41)

t̂x = 0 . (42)

This results in the on-shell renormalization constants

δM2
H± = ΣH±(0) , (43)
δtx = −Tx . (44)

Since the charged Higgs boson is renormalized on-shell, its
mass does not receive higher-order corrections.

3.2 Renormalized self-energies

With the on-shell renormalization constants derived in
Sect. 3.1 the renormalized neutral Higgs boson self-
energies read:

Σ̂hh(0) = Σhh(0) − δM2
H±(cαcβ + sαsβ)2 + T1

e

2sWMW

×(−2cαsαs3β + cβ(−c2αs2β + s2α(1 + s2β)))

+T2
e

2sWMW

×(−2cαsαc3β + sβ(c2α(1 + c2β) − s2αc
2
β)) (45)

Σ̂HH(0) = ΣHH(0) − δM2
H±(sαcβ − cαsβ)2

+T1
e

2sWMW

×(−cβs2αs2β + 2sαcαs3β + c2αcβ(1 + s2β))

+T2
e

2sWMW

×(2sαcαc3β − c2αc
2
βsβ + (1 + c2β)s

2
αsβ) (46)

Σ̂hH(0) = ΣhH(0) − δM2
H±

×(sβcβ(s2α − c2α) + sαcα(c2β − s2β))

+T1
e

2sWMW
(s3β(c

2
α − s2α) − sαcαcβ(1 + 2s2β))

+T2
e

2sWMW

×(c3β(c
2
α − s2α) + sαcαsβ(1 + 2c2β)) (47)

Σ̂AA(0) = ΣAA(0) − δM2
H± (48)

Σ̂GG(0) = ΣGG(0) +
e

2sWMW
(−T1cβ − T2sβ) (49)

Σ̂AG(0) = ΣAG(0) +
e

2sWMW
(−T1sβ + T2cβ) (50)

Σ̂hA(0) = ΣhA(0) + TA
e

2sWMW
(−cαsβ + sαcβ) (51)

Σ̂HA(0) = ΣHA(0) + TA
e

2sWMW
(−sαsβ − cαcβ) (52)

Σ̂hG(0) = ΣhG(0) + TA
e

2sWMW
(−sαsβ − cαcβ) (53)

Σ̂HG(0) = ΣHG(0) + TA
e

2sWMW
(−sαcβ + cαsβ) (54)
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H H

t

t

H H

ti

tj

H H

ti

Fig. 1. Generic Feynman diagrams for the m4
t contributions

to Higgs self-energies

tiH  tH

Fig. 2. Generic Feynman diagrams for the m4
t contributions

to Higgs tadpoles

3.3 Evaluation of m4
t contributions

For the evaluation of the leading m4
t corrections in the

Feynman-diagrammatic (FD) approach the diagrams
shown in Fig. 1 have to be evaluated for all self-energies
Σst(0), st = hh,HH, hH,AA,GG,AG, hA,HA, hG,HG.
Concerning the tadpole contributions the diagrams of
Fig. 2 have to be considered.

For sake of simplicity we now switch back to the φ1-φ2
basis (i.e. α = 0), where the results have a much simpler
form. The corresponding results in the h-H basis can be
obtained by the rotation

Σ̂hh = sin2 α Σ̂φ1 + cos2 α Σ̂φ2 − 2 sinα cosα Σ̂φ1φ2

Σ̂HH = cos2 α Σ̂φ1 + sin2 α Σ̂φ2 + 2 sinα cosα Σ̂φ1φ2

Σ̂hH = − sinα cosα
(
Σ̂φ1 − Σ̂φ2

)
+(cos2 α − sin2 α )Σ̂φ1φ2

Σ̂hA = − sinα Σ̂φ1A + cosα Σ̂φ2A

Σ̂HA = cosα Σ̂φ1A + sinα Σ̂φ2A

Σ̂hG = − sinα Σ̂φ1G + cosα Σ̂φ2G

Σ̂HG = cosα Σ̂φ1G + sinα Σ̂φ2G. (55)

The m4
t corrections have been obtained using the pro-

gram FeynArts 3 [19], employing the recently completed
MSSMmodel file [20]1. Details about the calculations with
FeynArts can be found in [21]. In the approximation of the
leading m4

t corrections (and with mb = 0) the result for
the renormalized self-energies of (45) - (54) reads:

Σ̂φ1φ1(0)

=
3 e2M2

Z

32(M2
W −M2

Z)π2s2β

m2
t

M2
W

1 Only the non-SM counterterms had to be added.

×
{
(s2t̃ c

2
t̃µ

2 + s∗2
t̃ c

∗2
t̃ µ

∗2) g(mt̃1
,mt̃2

)

−∆H±As
2
β

}
(56)

Σ̂φ2φ2(0)

=
3 e2M2

Z

32(M2
W −M2

Z)π2s2β

m2
t

M2
W

×
{

−∆H±Ac
2
β − 2m2

t log

(
m4
t

m2
t̃1
m2
t̃2

)

+

[
c2β
s2β

(s2t̃ c
2
t̃µ

2 + s∗2
t̃ c

∗2
t̃ µ

∗2) + 2
cβ
sβ

m2
t̃1

−m2
t̃2

mt

×(st̃ct̃µ+ s∗
t̃ c

∗
t̃µ

∗)st̃s
∗
t̃ ct̃c

∗
t̃

+2s2t̃ s
∗2
t̃ c

2
t̃ c

∗2
t̃

(m2
t̃1

−m2
t̃2
)2

m2
t

]
g(mt̃1

,mt̃2
)

+

[
2mt

cβ
sβ

(st̃ct̃µ+ s∗
t̃ c

∗
t̃µ

∗)

+4st̃s
∗
t̃ ct̃c

∗
t̃ (m

2
t̃1

−m2
t̃2
)

]
log

(
m2
t̃1

m2
t̃2

)}
(57)

Σ̂φ1φ2(0)

= − 3 e2M2
Z

32(M2
W −M2

Z)π2s2β

m2
t

M2
W

{
−∆H±Asβcβ

+

[
cβ
sβ

(s2t̃ c
2
t̃µ

2 + s∗2
t̃ c

∗2
t̃ µ

∗2)

+(st̃ct̃µ+ s∗
t̃ c

∗
t̃µ

∗)st̃s
∗
t̃ ct̃c

∗
t̃

m2
t̃1

−m2
t̃2

mt

]
g(mt̃1

,mt̃2
)

+(st̃ct̃µ+ s∗
t̃ c

∗
t̃µ

∗)mt log

(
m2
t̃1

m2
t̃2

)}
(58)

Σ̂AA(0)

= − 3 e2M2
Z

32(M2
W −M2

Z)π2s2β

m2
t

M2
W

∆H±A

(≡ ΣAA(0) −ΣH±(0)) (59)

Σ̂H±(0) = 0 (by renormalization) (60)

Σ̂GG(0) = 0 (61)

Σ̂AG(0) = 0 (62)

Σ̂φ1A(0)

=
3i e2M2

Z

64(M2
W −M2

Z)π2s3β

m2
t

M2
W

×(s2t̃ c
2
t̃µ

2 − s∗2
t̃ c

∗2
t̃ µ

∗2) g(mt̃1
,mt̃2

) (63)

Σ̂φ2A(0)

= − 3i e2M2
Z

64(M2
W −M2

Z)π2s3β

m2
t

M2
W

×
{[

cβ
sβ

(s2t̃ c
2
t̃µ

2 − s∗2
t̃ c

∗2
t̃ µ

∗2) + 2
m2
t̃1

−m2
t̃2

mt
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×(st̃ct̃µ− s∗
t̃ c

∗
t̃µ

∗)st̃s
∗
t̃ ct̃c

∗
t̃

]
g(mt̃1

,mt̃2
)

+2mt(st̃ct̃µ− s∗
t̃ c

∗
t̃µ

∗) log

(
m2
t̃1

m2
t̃2

)}
(64)

Σ̂φ1G(0) = 0 (65)

Σ̂φ2G(0) = 0 (66)

with

g(x, y) = 2 − x2 + y2

x2 − y2 log
(
x2

y2

)

∆H±A ≡ 1
s2β

[
s2t̃ c

2
t̃µ

2 − 2st̃s
∗
t̃ ct̃c

∗
t̃µµ

∗ + s∗2
t̃ c

∗2
t̃ µ

∗2]

−
m2
b̃L
m2
tµµ

∗

2s2β(m
2
b̃L

−m2
t̃1
)(m2

b̃L
−m2

t̃2
)

× log

(
m4
b̃L

m2
t̃1
m2
t̃2

)
+

1
2s2β

log

(
m2
t̃1

m2
t̃2

)

×
{

−
m2
t̃1
+m2

t̃2

m2
t̃1

−m2
t̃2

(
s2t̃ c

2
t̃µ

2 + s∗2
t̃ c

∗2
t̃ µ

∗2)

+µµ∗
[
2(st̃s

∗
t̃ − ct̃c

∗
t̃ ) − 2

m2
t̃1

−m2
t̃2

×
(
s2t̃ s

∗2
t̃ m

2
t̃1
+ c2t̃ c

∗2
t̃ m

2
t̃2

)

+m2
b̃L

(
ct̃c

∗
t̃

m2
b̃L

−m2
t̃2

− st̃s
∗
t̃

m2
b̃L

−m2
t̃1

)]}
(67)

m2
b̃L

≡ ct̃c
∗
t̃m

2
t̃1
+ st̃s

∗
t̃m

2
t̃2

−m2
t (68)

As expected, Σ̂hG(0) = Σ̂HG(0) = Σ̂AG(0) = Σ̂GG(0)
= 0, i.e. the Goldstone boson G decouples [11]. In order to
show the finiteness of Σ̂st, st = φ1φ1, φ2φ2, φ1φ2, AA, φ1A,
φ2A it was necessary to employ the SU(2) symmetry in
the scalar quark sector, see Sect. 2.5. In the simplified case
of the leading m4

t corrections and mb = 0 (i.e. no mixing
in the b̃ sector) only the left-handed scalar bottom quark,
b̃L contributes, where its mass is given by (68).

Exactly analogous expressions have been obtained for
the leading m4

b corrections (with mt̃ ↔ mb̃ and sβ ↔ cβ
(except in the ∆H±A prefactor)), which can be relevant
for large tanβ. Analogous to the m4

b corrections also the
corresponding m4

τ contributions (up to the color factor
and with mb̃ → mτ̃ ) have been evaluated.

A main difference compared to the RG improved EP
approach as presented in [14] is the validity of the result as
a function of the t̃ sector parameters. Since the FD result
is obtained directly in terms of the physical parameters
in the squark sector, the results of the FD approach are
valid for arbitrary mixing in the t̃ sector, whereas the RG
method is restricted to (m2

t̃2
−m2

t̃1
)/(m2

t̃2
+m2

t̃1
) � 1/2.

3.4 Corrections beyond one-loop order

Since it is known in the case of vanishing complex phases
that the two-loop corrections to the neutral Higgs boson
masses can be large, for the further numerical examples
and comparisons as presented in Sect. 5, the leading con-
tributions at O(GFαsm

4
t ) and O(G2

Fm
6
t ) are taken into

account. For sake of simplicity, up to now the two-loop
corrections are taken over from the CP-conserving case.
The leading corrections then only affect Σ̂φ2φ2(0) and are
valid for arbitrary Higgs sector parameters. They are given
by [4,22,23]

Σ̂2,ααs

φ2φ2
(0) =

GF

√
2

π2

αs
π

m4
t

sin2 β

[
4 + 3 log2

(
m2
t

M2
S

)

+2 log
(
m2
t

M2
S

)
− 6

Xt

MS

− X2
t

M2
S

{
3 log

(
m2
t

M2
S

)
+ 8
}
+

17
12

X4
t

M4
S

]
(69)

Σ̂2,α2

φ2φ2
(0) = − 9

16π4G
2
F

m6
t

sin2 β

[
X̃t+ t2

]
, (70)

X̃ =

[(
m2
t̃2

−m2
t̃1

4m2
t

sin2 2θt̃

)2

×
(
2 −

m2
t̃2
+m2

t̃1

m2
t̃2

−m2
t̃1

log

(
m2
t̃2

m2
t̃1

))

+
m2
t̃2

−m2
t̃1

2m2
t

sin2 2θt̃ log

(
m2
t̃2

m2
t̃1

)]
,

t =
1
2
log

(
m2
t̃1
m2
t̃2

m4
t

)
.

MS has to be chosen according to

MS =




√
m2
q̃ +m2

t

: Mt̃L
= Mt̃R

= mq̃[
M2
t̃L
M2
t̃R

+m2
t (M

2
t̃L

+M2
t̃R
) +m4

t

] 1
4

: Mt̃L
�= Mt̃R

(71)

and mt denotes the running top quark mass, mt =
mt(mt). Mt̃L

,Mt̃R
correspond to MQ̃,MQ̃′ in (33) respec-

tively. Contrary to the presented one-loop result for Σ̂φ2φ2 ,
(69) is valid only for not too large mass splitting between
the two t̃ mass eigenstates, but still gives a rather good
approximation for a large part of the MSSM parameter
space [22]. The full result in [17], however, will be ob-
tained in terms of the physical parameters and thus be
valid for arbitrary mixing in the t̃ sector. Also (70) is
valid for not too large mass splitting in the t̃ sector [4,
23]. However, since the numerical effect of the correction
in (70) is at the ∼ 2GeV level [6], this additional uncer-
tainty is neglected. Furthermore, (70) has been obtained
in the MS scheme, while all other corrections in this paper
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MCP =


M11 M12 M13

M21 M22 M23

M31 M32 M33


 =


 M̄2

H± − Σ̂AA(0) −Σ̂φ1A(0) −Σ̂φ2A(0)
−Σ̂φ1A(0) m2

φ1
− Σ̂φ1φ1(0) m2

φ1φ2
− Σ̂φ1φ2(0)

−Σ̂φ2A(0) m2
φ1φ2

− Σ̂φ1φ2(0) m2
φ2

− Σ̂φ2φ2(0)


 . (72)

are evaluated in the on-shell scheme. The corresponding
uncertainty is only of O(α2αs) and expected to be below
∼ 1GeV and therefore neglected.

4 The neutral MSSM Higgs sector

4.1 The Higgs boson masses

In this section, for sake of completeness, we review the
derivation of the Higgs boson masses from the calculated
higher-order Higgs boson self-energies. Since in the ap-
proximation used in Sect. 3.3 the external momentum has
been set to zero, this step of the evaluation is equal to the
EP approach [12–14]. In the full FD calculation [17] the
momentum dependence, however, is included, which can
lead to corrections of 1 − 2GeV.

Since the Goldstone boson G decouples, see Sect. 3.3,
the fields φ1, φ2 and A form a closed subspace that can be
evaluated on its own. The masses at higher order can be
obtained from the diagonalization of the matrix (see (72)
on top of the page) The diagonalization is performed with
the help of the (3 × 3) orthogonal matrix D3:

(A, φ1, φ2) MCP


 A

φ1

φ2




= (A, φ1, φ2) D3D3+ MCP D3D3+


 A

φ1

φ2




= (H3, H2, H1) MD
CP


H3

H2

H1


 (73)

with

MD
CP =


m2

H3
0 0

0 m2
H2

0
0 0 m2

H1


 , mH3 ≥ mH2 ≥ mH1 .

(74)
The numerical evaluation ofMD

CP andD3 has been pre-
sented e.g. in [14] and is also listed here for completeness.
The eigenvalues of MCP are given by

e1 = −1
3
r + 2

√
−p/3 cos

(ϕ
3

)
,

e2 = −1
3
r + 2

√
−p/3 cos

(
ϕ

3
+

2π
3

)
,

e3 = −1
3
r + 2

√
−p/3 cos

(
ϕ

3
− 2π

3

)
, (75)

with

p =
3s− r2

3
, q =

2r3

27
− rs

3
+ t,

ϕ = arccos

(
− q

2
√−p3/27

)
(76)

and

r = −Tr (MCP) , s =
1
2
[
Tr2 (MCP) − Tr

(
M2

CP
)]
,

t = −Det (MCP) . (77)

The rotation matrix D3 can be obtained as

D3 =


 |x1|/∆1 x2/∆2 x3/∆3

y1/∆1 |y2|/∆2 y3/∆3

z1/∆1 z2/∆2 |z3|/∆3


 ,

∆i =
√
x2
i + y2

i + z2
i , (78)

where

x1 = Det

(
M22 −m2

H3
M23

M32 M33 −m2
H3

)

y2 = Det

(
M11 −m2

H2
M13

M31 M33 −m2
H2

)

z3 = Det

(
M11 −m2

H1
M12

M21 M22 −m2
H1

)

x2 = Det

(
M13 M12

M33 −m2
H2

M32

)
× sign(y2)

x3 = Det

(
M12 M13

M22 −m2
H1

M23

)
× sign(z3)

y1 = Det

(
M23 M21

M33 −m2
H3

M31

)
× sign(x1)

y3 = Det

(
M13 M11 −m2

H1

M23 M21

)
× sign(z3)

z1 = Det

(
M21 M22 −m2

H3

M31 M32

)
× sign(x1)

z2 = Det

(
M12 M11 −m2

H2

M32 M31

)
× sign(y2) (79)

4.2 The Higgs boson couplings

Again we follow the prescriptions as given in [14]. Tak-
ing complex phases into account, all three neutral Higgs
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bosons are composed of a CP-even part, thus all three
Higgs bosons can couple to two gauge boson, V V = ZZ,
W+W−. The coupling normalized to the SM value is given
by

gHiV V = cβD
3
2,4−i + sβD

3
3,4−i . (80)

The coupling of two Higgs bosons to a Z boson, normal-
ized to the SM value, is given by

gHiHjZ = D3
1,4−i

(
cβD

3
3,4−j − sβD

3
2,4−j

)
−D3

1,4−j
(
cβD

3
3,4−i − sβD

3
2,4−i

)
. (81)

The Bose symmetry that forbids any anti-symmetric
derivative coupling of a vector particle to two identical
real scalar fields is respected, gHiHiV = 0.

Finally the decay width of the Hi to SM fermions can
be obtained from the decay width of the SM Higgs boson
by multiplying it with[(

gS
Hiff

)2
+
(
gP
Hiff

)2]
, (82)

with

gS
Hiuu = D3

3,4−i/sβ , gP
Hiuu = D3

1,4−i cβ/sβ (83)

gS
Hidd = D3

2,4−i/cβ , gP
Hidd = D3

1,4−i sβ/cβ (84)

for up- and down-type quarks respectively.

4.3 The special case of vanishing phases

In the CP conserving case, e.g. for the leading m4
t correc-

tions φt = φµ = 0, the CP-even Higgs bosons (denoted
as h and H with mh ≤ mH) and CP-odd Higgs boson
(denoted as A) do not mix. The unrotated mass matrix is
then given by

MCP = (85)
M̄

2
H± − Σ̂AA(0) 0 0

0 m2
φ1

− Σ̂φ1φ1(0) m2
φ1φ2

− Σ̂φ1φ2(0)
0 m2

φ1φ2
− Σ̂φ1φ2(0) m2

φ2
− Σ̂φ2φ2(0)




where the square of the CP-odd Higgs boson mass is given
by M2

A = M̄2
H± − Σ̂AA(0). For a large part of the MSSM

parameter space the mass ordering for the three Higgs
boson masses is given as mH ≥ MA ≥ mh, i.e.

MD
CP =


m2

H 0 0
0 M2

A 0
0 0 m2

h


 and D3 =


 0 1 0
sα 0 cα
cα 0 −sα


 .

(86)
The mass ordering in (74) can thus imply that in the limit
of vanishing phases H2 is the CP-odd Higgs boson.

5 Numerical examples and comparison
with other approaches

The results obtained in Sect. 3.3, (56)–(67), have been
compared analytically with the corresponding results pre-
sented in [13] (11)–(18c). Reference [13] calculates the

leading corrections to the Higgs boson mass matrix in
the EP approach. In the approximation of zero external
momentum as applied in Sect. 3.3, the leading m4

t cor-
rections as presented in (56)–(67) should therefore agree
with the corresponding results in [13]. Differences due to
different renormalization schemes are only expected from
two-loop order on, see [7,9]. Complete analytical agree-
ment between the two results is found, if the correction to
MH

∣∣∣
aa
,the A boson propagator in (11) of [13] is identified

with our renormalized A boson self-energy, Σ̂AA, given in
(59). Σ̂AA exhibits an additional term compared to the
correction to MH

∣∣∣
aa
, arising from the fact that in [13]

the charged Higgs boson sector has been neglected, while
in our approach MH± is chosen as an input parameter,
thus introducing ΣH± into the result. Therefore, this dif-
ference only reflects the fact of a different choice of input
parameters. A similar observation has already been made
in [13], while comparing with [14] (where also analytical
agreement in the appropriate limits has been found.)

In the following subsections some numerical examples
are presented and compared to results obtained in the RG
improved EP calculation. The examples are based on the
results given in Sects. 3.3, 3.4. They are meant to illustrate
the possible effects of complex phases in the MSSM. For
a phenomenological analysis, however constraints on CP-
violating parameters from experimental bounds on electric
dipole moments (EDMs) have to be taken into account,
see Sect. 6. On the other hand, the bounds from EDMs
can easily be evaded by making the first two generations
sufficiently heavy [24]. A more detailed phenomenological
analysis of the FD results, including the full one-loop and
leading two-loop corrections in the cMSSM to the Higgs
boson self-energies, and taking into account all existing
experimental constraints can be found in [17].

5.1 Higgs boson masses

In Fig. 3 the two lightest Higgs boson masses, mH1 and
mH2 , are shown as a function of the phase of the trilin-
ear coupling in the t̃ sector, ϕAt

. The soft SUSY-breaking
parameters are chosen to emphasize the effect of the CP-
violating phases, MSUSY = 500GeV, |At| = 1000GeV
and |µ| = 2000GeV. The phase of µ is chosen to be zero,
except for the lower right plot, where it is set to ϕµ = π/2.
The phases in the b and τ sector are set to zero. The differ-
ent plots show the variation with tanβ, tanβ = 2, 5, 20. In
the CP-conserving case for the above chosen soft SUSY-
breaking parameters, tanβ = 2 is already excluded by
Higgs boson searches [25]. However, in the CP-violating
case this limit is weakened [15] due to possible suppressed
production cross section and/or suppressed decays of the
lightest Higgs boson to b quarks, see Sect. 5.2. In each plot
different values for the charged Higgs boson masses have
been chosen, MH± = 150, 200, 300, 500GeV. The largest
effects of the phases are observed for small tanβ and
smallMH± . For largeMH± the effects of the CP-violating
phases become negligible small.
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Fig. 3. The two lightest neutral Higgs boson masses are shown as a function of ϕAt for different values of MH± . In the first
three plots ϕµ is set to zero and tanβ is chosen as 2, 5, 20. In the last plot ϕµ = π/2 and tanβ = 20 is taken. The other
parameters are MSUSY = 500GeV, |At| = 1000GeV and |µ| = 2000GeV

A numerical comparison with e.g. Figure 3 in [14]
shows agreement better than 10% for not too large phases,
φAt � 0.8. A larger phase corresponds to larger mixing in
the t̃ sector. This, on the one hand, makes the corrections
and thus the uncertainties in the Higgs sector larger. On
the other hand, the RG improved EP calculations tends
to loose accuracy for too large mixing in the t̃ sector. The
agreement improves slightly if a comparison with the more
complete result of [15] (see e.g. Fig. 1) is performed. Fur-
thermore, it has been shown in [7] that differences in the
Higgs boson masses arising from different renormalizations

can be significant, especially for large t̃ mixing. Therefore
agreement better than 5-10% cannot yet be expected for
all parameter sets due to the different renormalizations
employed and the yet more complete evaluation performed
in the RG improved EP calculation.

In Fig. 4 the mass difference of the two heavier Higgs
bosons, mH3 − mH2 , is shown as a function of ϕAt . The
other parameters are chosen as in Fig. 3. A large enhance-
ment of the mass difference can be observed for small
tanβ. The agreement with [14,15] is found at the same
level as for Fig. 3.
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Fig. 4. The mass difference between the two heavy Higgs boson, mH3 − mH2 , is shown as a function of ϕAt for different values
of MH± . In the first three plots ϕµ is set to zero and tanβ is chosen as 2, 5, 20. In the last plot ϕµ = π/2 and tanβ = 20 is
taken. The other parameters are MSUSY = 500GeV, |At| = 1000GeV and |µ| = 2000GeV

5.2 Higgs boson couplings

In Fig. 5 the coupling of the lightest Higgs boson to two
SM gauge bosons, relative to its SM value, is shown as
a function ϕAt

. The other parameters are chosen as in
Fig. 3. Large suppressions occur for small values of MH± .
For MH± � 250GeV no suppression could be observed.
For small tanβ the suppression can amount several or-
ders of magnitude, whereas for large tanβ a suppression
by a factor of 10 can be observed. These results can be
compared with the RG improved EP approach, [14] Fig. 5
and [15] Fig. 1. As for the Higgs boson masses, we find
reasonable agreement for not too large values of φAt .

In Fig. 6 the decay rate of the lightest Higgs boson to
b quarks, Γ (H1 → bb̄), relative to its SM value, is shown
as a function ϕAt . The other parameters are chosen as in
Fig. 3. The MSSM decay rate, although dependent on the
complex phases, is considerably larger than the SM one
for most parts of the parameter space. This renders the bb̄
channel the main decay channel also in the cMSSM.

6 The Fortran code FeynHiggsFastC

The results presented Sect. 3.3 and Sect. 3.4 are incorpo-
rated into the Fortran code FeynHiggsFastC. They are
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Fig. 5. The coupling of the lightest Higgs boson to two gauge bosons (relative to its SM value) is shown as a function of ϕAt

for different values of MH± . In the first three plots ϕµ is set to zero and tanβ is chosen as 2, 5, 20. In the last plot ϕµ = π/2
and tanβ = 20 is taken. The other parameters are MSUSY = 500GeV, |At| = 1000GeV and |µ| = 2000GeV

supplemented by the subleading one-loop corrections from
the t/t̃ sector [22] as well as by the full logarithmic one-
loop corrections from all other sectors of the MSSM, ob-
tained in the RG approximation [4].

In the front-end of the code, the user can specify the
input parameters, including all relevant complex phases.
This part can be manipulated at the user’s will. The main
part of the code consists of the routines needed for the
evaluation of the higher-order corrections to the neutral
Higgs boson mass matrix, and should not be manipulated.

FeynHiggsFastC evaluates the following items in the
cMSSM Higgs sector:

– the three neutral Higgs boson masses
– the effective couplings of one neutral Higgs boson to

two SM gauge bosons and of two neutral Higgs bosons
to a Z boson

– the changes in the branching ratio for a Higgs decaying
to SM fermions

Furthermore the following “check items” are evaluated:

– the SUSY corrections to the ρ-parameter, coming from
the t̃/b̃ sector. (The complex phases enter only via their
effective change of the t̃ and b̃ masses, where they can
enlarge the splitting and increase the contribution to
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Fig. 6. The decay rate of the lightest Higgs boson to b quarks, Γ (H1 → bb̄), relative to its SM value, is shown as a function of
ϕAt for different values of MH± . In the first three plots ϕµ is set to zero and tanβ is chosen as 2, 5, 20. In the last plot ϕµ = π/2
and tanβ = 20 is taken. The other parameters are MSUSY = 500GeV, |At| = 1000GeV and |µ| = 2000GeV

∆ρ.) The SUSY corrections are implemented in O(α)
and O(ααs), where the gluino-exchange corrections,
which go to zero for largemg̃ have been omitted [26]. A
value of∆ρ outside the experimentally preferred region
of ∆ρSUSY <∼ 3 × 10−3 [27] indicates experimentally
disfavored t̃ and b̃ masses.

– the EDM of the electron and the neutron, following
the calculation of [28]2 with the convention of com-
mon soft SUSY-breaking parameters for up- and down-
type squarks. Values outside the experimentally al-

2 We thank C. Schappacher for providing the corresponding
Fortran code

lowed ranges indicate either too large CP-violating
phases or demand heavier squarks in the first two fam-
ilies [24].

The code can be obtained from the FeynHiggs[29] home
page: www.feynhiggs.de.

7 Conclusions

We have presented the application of the Feynman-
diagrammatic method and the on-shell renormalization
scheme to radiative corrections in the Higgs sector of the
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MSSM with complex phases. This provides a complemen-
tary method to the (renormalization group improved) Ef-
fective Potential approach that has been used so far for
phenomenological analyses. The presented set-up can then
be used for a detailed study of the cMSSM Higgs sector
in the FD/on-shell approach.

The general FD/on-shell method has been analyzed.
Details about the renormalization in the on-shell scheme
and the derivation of the renormalized Higgs boson self-
energies have been presented. As an example the lead-
ing fermionic corrections to the cMSSM Higgs sector have
been calculated analytically, making use of the recently
completed MSSM model file for FeynArts 3. After showing
the generic applicability of the approach, some numerical
examples have been calculated. The leading fermionic cor-
rections have been supplemented by the leading two-loop
corrections. Results have been obtained for the masses of
the neutral cMSSM Higgs bosons, their couplings to SM
gauge bosons and their couplings to SM fermions. Reason-
able agreement better than 10% with the RG improved
EP method has been found for not too large mixing in
the scalar top sector.

Finally the public Fortran code FeynHiggsFastC has
been presented. It provides the evaluation of the masses
and couplings of the cMSSM Higgs bosons in dependence
of the relevant cMSSM parameters, including all possible
complex phases. Besides the leading fermionic one-loop
and the leading two-loop corrections, also the full loga-
rithmic one-loop contributions, taken over from the real
MSSM, have been implemented. The code is obtainable at
www.feynhiggs.de.
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